MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

HOMEWORK 9

Due date: Nov 11 (Wed)

Exercises from the textbook. 13.22(a,b), 13.23¹, 13.24, 13.25, 13.26, 13.27, 13.28

Out-of-the-textbook exercises (these are as mandatory as the ones from the textbook).

- 1. Let (x_n) be a sequence and $x \in \mathbb{R}$. For each of the following conditions, determine whether it implies that x is the limit of (x_n) ; if YES, then prove it, and if NO, give a counterexample, i.e. give an example of (x_n) and x that satisfy the condition but (x_n) does not converge to x.
 - (a) $\forall \varepsilon > 0 \ \exists K \in \mathbb{N}$ such that $\forall n \ge K, x x_n < \varepsilon$.
 - (b) $\forall \varepsilon > 0 \ \exists K \in \mathbb{N}$ such that $\forall n \ge K, x_n \le x \text{ and } x x_n < \varepsilon$.
 - (c) $x = \sup_{n \in \mathbb{N}} x_n$ and $x = \inf_{n \in \mathbb{N}} x_n$.
 - (d) $\forall \varepsilon > 0 \ \exists K \in \mathbb{N}$ such that $x \varepsilon < \inf_{n \in \mathbb{N}} x_n \le \sup_{n \in \mathbb{N}} x_n < x + \varepsilon$.
 - (e) $\exists K \in \mathbb{N} \ \forall \varepsilon > 0 \ \exists n \ge K, \ |x_n x| < \varepsilon.$
- **2.** Prove that for any sequence $(x_n)_n$ and $L \in \mathbb{R}$, the sequence $(x_n)_n$ converges to L if and only if the sequence $(x_n L)_n$ converges to 0.

¹The hint in the textbook recommends using Proposition 13.15 to show that $\sup A + \sup B$ is the least upper bound for C. I think this is a bit of an overkill and I suggest proving this directly: Fix $u < \sup A + \sup B$ and let ε be the distance between u and $\sup A + \sup B$. Deduce that there are $a \in A$ and $b \in B$ with $\sup A - \frac{\varepsilon}{2} < a$ and $\sup B - \frac{\varepsilon}{2} < b$ and see where this puts a + b in relation to u.